

Wei T Yamamoto M Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation Inverse Probl Sci Eng 21165.65387 Google Scholar McCue SW Hsieh M Moroney TJ Nelson MI Asymptotic and numerical results for a model of solvent-dependent drug diffusion through polymeric spheres SIAM J Appl Math 22311 2873269 1452.76195 Google Scholar Cross Ref Lao LL Venkatraman SS Peppas NA Modeling of drug release from biodegradable polymer blends Eur J Pharm Biopharm 2008 70 796 803 Google Scholar I J Pharmaceutics 2006 314 189 197 Google Scholar

Faisant N Akiki J Siepmann F Benoit JP Siepmann J Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory. Kipper MJ Narasimhan B Molecular description of erosion phenomena in biodegradable polymers Macromolecules 21999 Google Scholar Hsieh M McCue SW Moroney TJ Nelson MI Drug diffusion from polymeric delivery devices: a problem with two moving boundaries ANZIAM J 21387.92035 Google Scholar thesis, Queensland University of Technology Google Scholar Hsieh MH (2012) Mathematical modelling of controlled drug release from polymer micro-spheres: incorporating the effects of swelling, diffusion and dissolution via moving boundary problems. Johansson BT Lesnic D Reeve T A method of fundamental solutions for the two-dimensional inverse Stefan problem Inverse Probl Sci Eng 21304.65214 Google Scholar Cross Ref Stefan J Uber einige Probleme der Theorie der Wärmeleitung S-B Wien Akad Mat Natur 1889 98 473 484 21.1197.01 Google Scholar Rubinsteın LI The Stefan problem 1971 New York American Mathematical Society Google Scholar Lamé G Clapeyron BP Mémoire sur la solidification par refroidissement d’un globe solide Ann Chem Phys 1831 47 250 256 Google Scholar Gol’dman NL Inverse Stefan problems 1997 Beijing Kluwer Academic Publ 0899.35123 Google Scholar Sarabadan S Rashedi K Adibi H Boundary determination of the inverse heat conduction problem in one and two dimensions via the collocation method based on the satisfier functions Iran J Sci Technol Trans Sci 21397.65176 Google Scholar Rashedi K Adibi H Rad JA Parand K Application of the meshfree methods for solving the inverse one-dimensional Stefan problem Eng Anal Bound Elem 2014 40 1 21 3161263 1297.80005 Google Scholar Chakraverty S (2020) Mathematical methods in interdisciplinary sciences. Hadian AH Rad JA A computational source modeling of brain activity: an inverse problem J Neurodev Cognit 2019 1 50 56 Google Scholar Huntul M Lesnic D Johansson BT Determination of an additive time- and space-dependent coefficient in the heat equation Int J Numer Meth Heat Fluid Flow 21373 Google Scholar Chapkoa R Johansson BT A boundary integral equation method for numerical solution of parabolic and hyperbolic cauchy problems Appl Numer Math 201 Google Scholar Jaroudi R Baravdish G Johansson BT Astrom F Numerical reconstruction of brain tumours Inverse Prob Sci Eng 207348506 Google Scholar Johansson BT Lesnic D Reeve T A method of fundamental solutions for the radially symmetric inverse heat conduction problem Int Commun Heat Mass 2012 39 8.65099 Google Scholar Johansson BT Lesnic D Reeve T A method of fundamental solutions for radially symmetric and axisymmetric backward heat conduction problems Int J Comput Math 21568 2949465 1258.65099 Google Scholar Digital Library Johansson BT Lesnic D Reeve T A method of fundamental solutions for two-dimensional heat conduction Int J Comput Math 21713 2801155 1223.35013 Google Scholar Digital Library Johansson BT Lesnic D Reeve T Numerical approximation of the one-dimensional inverse Cauchy–Stefan problem using a method of fundamental solutions Invese Probl Sci Eng 21254.65101 Google Scholar Cross Ref Johansson BT Lesnic D Reeve T A method of fundamental solutions for the one-dimensional inverse Stefan problem Appl Math Model 24378 2801960 1225.80007 Google Scholar Cross Ref Canon JR The one dimensional heat equation 1984 Cambridge Cambridge University Press Google Scholar Beck JV Blackwell B Clair C Inverse conduction Ill-posed problems 1985 Amsterdam Wiley 0633.73120 Google Scholar
